Generalized Albanese morphisms

نویسنده

  • Georg Hein
چکیده

We define generalizations of the Albanese variety for a projective variety X. The generalized Albanese morphisms X albr // _ _ _ Albr(X) contract those curves C in X for which the induced morphism Hom(π1(X),U(r)) → Hom(π1(C),U(r)) has a finite image. Thus, they may be interpreted as a U(r)-version of the Shafarevich morphism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The category of generalized crossed modules

In the definition of a crossed module $(T,G,rho)$, the actions of the group $T$ and $G$ on themselves are given by conjugation. In this paper, we consider these actions to be arbitrary and thus generalize the concept of ordinary crossed module. Therefore, we get the category ${bf GCM}$, of all generalized crossed modules and generalized crossed module morphisms between them, and investigate som...

متن کامل

MAXIMAL PRYM VARIETY AND MAXIMAL MORPHISM

We investigated maximal Prym varieties on finite fields by attaining their upper bounds on the number of rational points. This concept gave us a motivation for defining a generalized definition of maximal curves i.e. maximal morphisms. By MAGMA, we give some non-trivial examples of maximal morphisms that results in non-trivial examples of maximal Prym varieties.

متن کامل

ar X iv : m at h / 99 06 16 5 v 1 [ m at h . A G ] 2 4 Ju n 19 99 Albanese and Picard 1 - motives

LetX be an n-dimensional algebraic variety over a field of characteristic zero. We describe algebraically defined Deligne 1-motives Alb(X), Alb−(X), Pic(X) and Pic−(X) which generalize the classical Albanese and Picard varieties of a smooth projective variety. We compute Hodge, l-adic and De Rham realizations proving Deligne’s conjecture for H, H2n−1, H 1 and H1. We investigate functoriality, u...

متن کامل

Homotopy approximation of modules

Deleanu, Frei, and Hilton have developed the notion of generalized Adams completion in a categorical context. In this paper, we have obtained the Postnikov-like approximation of a module, with the help of a suitable set of morphisms.

متن کامل

Computing in Picard groups of projective curves over finite fields

We give algorithms for computing with divisors on projective curves over finite fields, and with their Jacobians, using the algorithmic representation of projective curves developed by Khuri-Makdisi. We show that various desirable operations can be performed efficiently in this setting: decomposing divisors into prime divisors; computing pull-backs and push-forwards of divisors under finite mor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003